就微电网的运行而言,最佳调度是必须考虑的至关重要问题。在这方面,本文提出了一个有效的框架,用于考虑储能设备,风力涡轮机,微型涡轮机的最佳计划可再生微电网。由于微电网操作问题的非线性和复杂性,使用准确且可靠的优化技术有效解决此问题至关重要。为此,在拟议的框架中,基于教师学习的优化可有效地解决系统中的调度问题。此外,提出了基于双向长期短期记忆的深度学习模型,以解决短期风能预测问题。使用IEEE 33-BUS测试系统检查了建议的框架的可行性和性能以及风力预测对操作效率的影响。此外,澳大利亚羊毛北风现场数据被用作现实世界数据集,以评估预测模型的性能。结果表明,在微电网的最佳计划中,提出的框架的有效性能有效。
translated by 谷歌翻译
Independence testing is a fundamental and classical statistical problem that has been extensively studied in the batch setting when one fixes the sample size before collecting data. However, practitioners often prefer procedures that adapt to the complexity of a problem at hand instead of setting sample size in advance. Ideally, such procedures should (a) allow stopping earlier on easy tasks (and later on harder tasks), hence making better use of available resources, and (b) continuously monitor the data and efficiently incorporate statistical evidence after collecting new data, while controlling the false alarm rate. It is well known that classical batch tests are not tailored for streaming data settings, since valid inference after data peeking requires correcting for multiple testing, but such corrections generally result in low power. In this paper, we design sequential kernelized independence tests (SKITs) that overcome such shortcomings based on the principle of testing by betting. We exemplify our broad framework using bets inspired by kernelized dependence measures such as the Hilbert-Schmidt independence criterion (HSIC) and the constrained-covariance criterion (COCO). Importantly, we also generalize the framework to non-i.i.d. time-varying settings, for which there exist no batch tests. We demonstrate the power of our approaches on both simulated and real data.
translated by 谷歌翻译
Transformer models have achieved great success across many NLP problems. However, previous studies in automated ICD coding concluded that these models fail to outperform some of the earlier solutions such as CNN-based models. In this paper we challenge this conclusion. We present a simple and scalable method to process long text with the existing transformer models such as BERT. We show that this method significantly improves the previous results reported for transformer models in ICD coding, and is able to outperform one of the prominent CNN-based methods.
translated by 谷歌翻译
小波神经网络(WNN)已在许多领域应用于解决回归和分类问题。大数据出现后,随着数据以轻快的速度生成,必须一旦生成,因为数据的性质可能会在短时间间隔发生巨大变化,因此必须立即进行分析。这是必要的,这是必不可少的,那就是大数据全是普遍的,并给数据科学家带来了计算挑战。因此,在本文中,我们构建了一种有效的可扩展,并行的小波神经网络(SPWNN),该神经网络(SPWNN)采用了平行的随机梯度算法(SGD)算法。 SPWNN是在水平并行化框架中的静态和流环境下设计和开发的。 SPWNN是通过使用Morlet和高斯函数作为激活函数来实现的。这项研究是在具有超过400万个样本和医学研究数据等大数据集上进行的,该数据具有超过10,000个功能,其本质上具有很高的尺寸。实验分析表明,在静态环境中,具有Morlet激活函数的SPWNN优于分类数据集上的高斯SPWNN。但是,在回归的情况下,观察到了相反的情况。相反,在流媒体环境中,高斯在分类方面的表现优于莫雷特,而莫雷特在回归数据集上的表现优于高斯。总体而言,拟议的SPWNN体系结构的速度为1.32-1.40。
translated by 谷歌翻译
Vanilla联合学习(FL)依赖于集中的全球聚合机制,并假设所有客户都是诚实的。这使得FL减轻单一失败和不诚实客户的挑战。由于FL和区块链的好处(例如,民主,激励性和不变性),FL的设计理念中的这些即将到来的挑战呼吁基于区块链的联邦学习(BFL)。但是,香草BFL中的一个问题是,它的功能不会以动态的方式遵循采用者的需求。此外,Vanilla BFL依赖于无法验证的客户的自我报告的贡献,例如数据大小,因为在FL中不允许检查客户的原始数据是否存在隐私问题。我们设计和评估了一种新型的BFL框架,并以更大的灵活性和激励机制(称为Fair-BFL)解决了香草BFL中确定的挑战。与现有作品相反,Fair-BFL通过模块化设计提供了前所未有的灵活性,使采用者可以按照动态的方式调整其业务需求的能力。我们的设计说明了BFL量化每个客户对全球学习过程的贡献的能力。这种量化提供了一个合理的指标,可以在联邦客户之间分配奖励,并帮助发现可能毒害全球模型的恶意参与者。
translated by 谷歌翻译
我们介绍了一个多臂强盗模型,其中奖励是多个随机变量的总和,每个动作只会改变其中的分布。每次动作之后,代理都会观察所有变量的实现。该模型是由营销活动和推荐系统激励的,在该系统中,变量代表单个客户的结果,例如点击。我们提出了UCB风格的算法,以估计基线上的动作的提升。我们研究了问题的多种变体,包括何时未知基线和受影响的变量,并证明所有这些变量均具有sublrinear后悔界限。我们还提供了较低的界限,以证明我们的建模假设的必要性是合理的。关于合成和现实世界数据集的实验显示了估计不使用这种结构的策略的振奋方法的好处。
translated by 谷歌翻译
电机控制中的一个主要问题是了解大脑计划的计划,并在面对延迟和嘈杂的刺激面前执行适当的运动。解决这种控制问题的突出框架是最佳反馈控制(OFC)。 OFC通过将嘈杂的感官刺激和使用卡尔曼滤波器或其扩展集成内部模型的预测来生成优化行为相关标准的控制操作。然而,缺乏Kalman滤波和控制的令人满意的神经模型,因为现有的提案具有以下限制:不考虑感官反馈的延迟,交替阶段的训练,以及需要了解噪声协方差矩阵,以及系统动态。此外,这些研究中的大多数考虑了卡尔曼滤波的隔离,而不是与控制联合。为了解决这些缺点,我们介绍了一种新的在线算法,它将自适应卡尔曼滤波与模型自由控制方法相结合(即,策略梯度算法)。我们在具有局部突触塑性规则的生物合理的神经网络中实现该算法。该网络执行系统识别和卡尔曼滤波,而无需多个阶段,具有不同的更新规则或噪声协方差的知识。在内部模型的帮助下,它可以使用延迟感官反馈执行状态估计。它在不需要任何信息知识的情况下了解控制政策,从而避免需要重量运输。通过这种方式,我们的OFC实施解决了在存在刺激延迟存在下生产适当的感官电动机控制所需的信用分配问题。
translated by 谷歌翻译
Learning problems form an important category of computational tasks that generalizes many of the computations researchers apply to large real-life data sets. We ask: what concept classes can be learned privately, namely, by an algorithm whose output does not depend too heavily on any one input or specific training example? More precisely, we investigate learning algorithms that satisfy differential privacy, a notion that provides strong confidentiality guarantees in contexts where aggregate information is released about a database containing sensitive information about individuals.Our goal is a broad understanding of the resources required for private learning in terms of samples, computation time, and interaction. We demonstrate that, ignoring computational constraints, it is possible to privately agnostically learn any concept class using a sample size approximately logarithmic in the cardinality of the concept class. Therefore, almost anything learnable is learnable privately: specifically, if a concept class is learnable by a (non-private) algorithm with polynomial sample complexity and output size, then it can be learned privately using a polynomial number of samples. We also present a computationally efficient private PAC learner for the class of parity functions. This result dispels the similarity between learning with noise and private learning (both must be robust to small changes in inputs), since parity is thought to be very hard to learn given random classification noise.Local (or randomized response) algorithms are a practical class of private algorithms that have received extensive investigation. We provide a precise characterization of local private learning algorithms. We show that a concept class is learnable by a local algorithm if and only if it is learnable in the statistical query (SQ) model. Therefore, for local private learning algorithms, the similarity to learning with noise is stronger: local learning is equivalent to SQ learning, and SQ algorithms include most known noise-tolerant learning algorithms. Finally, we present a separation between the power of interactive and noninteractive local learning algorithms. Because of the equivalence to SQ learning, this result also separates adaptive and nonadaptive SQ learning.
translated by 谷歌翻译